Copied to
clipboard

G = C3:S3xC22xC6order 432 = 24·33

Direct product of C22xC6 and C3:S3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C3:S3xC22xC6, C63:6C2, C62:35D6, C33:6C24, (C2xC62):13S3, C62:21(C2xC6), (C2xC62):14C6, C32:8(S3xC23), C32:5(C23xC6), (C32xC6):6C23, (C3xC62):18C22, C6:2(S3xC2xC6), C3:2(S3xC22xC6), (C2xC6):14(S3xC6), (C22xC6):7(C3xS3), (C3xC6):5(C22xC6), (C3xC6):8(C22xS3), SmallGroup(432,773)

Series: Derived Chief Lower central Upper central

C1C32 — C3:S3xC22xC6
C1C3C32C33C3xC3:S3C6xC3:S3C2xC6xC3:S3 — C3:S3xC22xC6
C32 — C3:S3xC22xC6
C1C22xC6

Generators and relations for C3:S3xC22xC6
 G = < a,b,c,d,e,f | a2=b2=c6=d3=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, fdf=d-1, fef=e-1 >

Subgroups: 2692 in 932 conjugacy classes, 294 normal (10 characteristic)
C1, C2, C2, C3, C3, C3, C22, C22, S3, C6, C6, C23, C23, C32, C32, C32, D6, C2xC6, C2xC6, C24, C3xS3, C3:S3, C3xC6, C3xC6, C22xS3, C22xC6, C22xC6, C22xC6, C33, S3xC6, C2xC3:S3, C62, C62, S3xC23, C23xC6, C3xC3:S3, C32xC6, S3xC2xC6, C22xC3:S3, C2xC62, C2xC62, C2xC62, C6xC3:S3, C3xC62, S3xC22xC6, C23xC3:S3, C2xC6xC3:S3, C63, C3:S3xC22xC6
Quotients: C1, C2, C3, C22, S3, C6, C23, D6, C2xC6, C24, C3xS3, C3:S3, C22xS3, C22xC6, S3xC6, C2xC3:S3, S3xC23, C23xC6, C3xC3:S3, S3xC2xC6, C22xC3:S3, C6xC3:S3, S3xC22xC6, C23xC3:S3, C2xC6xC3:S3, C3:S3xC22xC6

Smallest permutation representation of C3:S3xC22xC6
On 144 points
Generators in S144
(1 67)(2 68)(3 69)(4 70)(5 71)(6 72)(7 101)(8 102)(9 97)(10 98)(11 99)(12 100)(13 93)(14 94)(15 95)(16 96)(17 91)(18 92)(19 76)(20 77)(21 78)(22 73)(23 74)(24 75)(25 82)(26 83)(27 84)(28 79)(29 80)(30 81)(31 52)(32 53)(33 54)(34 49)(35 50)(36 51)(37 58)(38 59)(39 60)(40 55)(41 56)(42 57)(43 64)(44 65)(45 66)(46 61)(47 62)(48 63)(85 142)(86 143)(87 144)(88 139)(89 140)(90 141)(103 124)(104 125)(105 126)(106 121)(107 122)(108 123)(109 130)(110 131)(111 132)(112 127)(113 128)(114 129)(115 136)(116 137)(117 138)(118 133)(119 134)(120 135)
(1 34)(2 35)(3 36)(4 31)(5 32)(6 33)(7 134)(8 135)(9 136)(10 137)(11 138)(12 133)(13 132)(14 127)(15 128)(16 129)(17 130)(18 131)(19 37)(20 38)(21 39)(22 40)(23 41)(24 42)(25 43)(26 44)(27 45)(28 46)(29 47)(30 48)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)(55 73)(56 74)(57 75)(58 76)(59 77)(60 78)(61 79)(62 80)(63 81)(64 82)(65 83)(66 84)(85 103)(86 104)(87 105)(88 106)(89 107)(90 108)(91 109)(92 110)(93 111)(94 112)(95 113)(96 114)(97 115)(98 116)(99 117)(100 118)(101 119)(102 120)(121 139)(122 140)(123 141)(124 142)(125 143)(126 144)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)
(1 26 21)(2 27 22)(3 28 23)(4 29 24)(5 30 19)(6 25 20)(7 142 16)(8 143 17)(9 144 18)(10 139 13)(11 140 14)(12 141 15)(31 47 42)(32 48 37)(33 43 38)(34 44 39)(35 45 40)(36 46 41)(49 65 60)(50 66 55)(51 61 56)(52 62 57)(53 63 58)(54 64 59)(67 83 78)(68 84 73)(69 79 74)(70 80 75)(71 81 76)(72 82 77)(85 96 101)(86 91 102)(87 92 97)(88 93 98)(89 94 99)(90 95 100)(103 114 119)(104 109 120)(105 110 115)(106 111 116)(107 112 117)(108 113 118)(121 132 137)(122 127 138)(123 128 133)(124 129 134)(125 130 135)(126 131 136)
(1 23 30)(2 24 25)(3 19 26)(4 20 27)(5 21 28)(6 22 29)(7 14 144)(8 15 139)(9 16 140)(10 17 141)(11 18 142)(12 13 143)(31 38 45)(32 39 46)(33 40 47)(34 41 48)(35 42 43)(36 37 44)(49 56 63)(50 57 64)(51 58 65)(52 59 66)(53 60 61)(54 55 62)(67 74 81)(68 75 82)(69 76 83)(70 77 84)(71 78 79)(72 73 80)(85 99 92)(86 100 93)(87 101 94)(88 102 95)(89 97 96)(90 98 91)(103 117 110)(104 118 111)(105 119 112)(106 120 113)(107 115 114)(108 116 109)(121 135 128)(122 136 129)(123 137 130)(124 138 131)(125 133 132)(126 134 127)
(1 88)(2 89)(3 90)(4 85)(5 86)(6 87)(7 80)(8 81)(9 82)(10 83)(11 84)(12 79)(13 78)(14 73)(15 74)(16 75)(17 76)(18 77)(19 91)(20 92)(21 93)(22 94)(23 95)(24 96)(25 97)(26 98)(27 99)(28 100)(29 101)(30 102)(31 103)(32 104)(33 105)(34 106)(35 107)(36 108)(37 109)(38 110)(39 111)(40 112)(41 113)(42 114)(43 115)(44 116)(45 117)(46 118)(47 119)(48 120)(49 121)(50 122)(51 123)(52 124)(53 125)(54 126)(55 127)(56 128)(57 129)(58 130)(59 131)(60 132)(61 133)(62 134)(63 135)(64 136)(65 137)(66 138)(67 139)(68 140)(69 141)(70 142)(71 143)(72 144)

G:=sub<Sym(144)| (1,67)(2,68)(3,69)(4,70)(5,71)(6,72)(7,101)(8,102)(9,97)(10,98)(11,99)(12,100)(13,93)(14,94)(15,95)(16,96)(17,91)(18,92)(19,76)(20,77)(21,78)(22,73)(23,74)(24,75)(25,82)(26,83)(27,84)(28,79)(29,80)(30,81)(31,52)(32,53)(33,54)(34,49)(35,50)(36,51)(37,58)(38,59)(39,60)(40,55)(41,56)(42,57)(43,64)(44,65)(45,66)(46,61)(47,62)(48,63)(85,142)(86,143)(87,144)(88,139)(89,140)(90,141)(103,124)(104,125)(105,126)(106,121)(107,122)(108,123)(109,130)(110,131)(111,132)(112,127)(113,128)(114,129)(115,136)(116,137)(117,138)(118,133)(119,134)(120,135), (1,34)(2,35)(3,36)(4,31)(5,32)(6,33)(7,134)(8,135)(9,136)(10,137)(11,138)(12,133)(13,132)(14,127)(15,128)(16,129)(17,130)(18,131)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78)(61,79)(62,80)(63,81)(64,82)(65,83)(66,84)(85,103)(86,104)(87,105)(88,106)(89,107)(90,108)(91,109)(92,110)(93,111)(94,112)(95,113)(96,114)(97,115)(98,116)(99,117)(100,118)(101,119)(102,120)(121,139)(122,140)(123,141)(124,142)(125,143)(126,144), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,26,21)(2,27,22)(3,28,23)(4,29,24)(5,30,19)(6,25,20)(7,142,16)(8,143,17)(9,144,18)(10,139,13)(11,140,14)(12,141,15)(31,47,42)(32,48,37)(33,43,38)(34,44,39)(35,45,40)(36,46,41)(49,65,60)(50,66,55)(51,61,56)(52,62,57)(53,63,58)(54,64,59)(67,83,78)(68,84,73)(69,79,74)(70,80,75)(71,81,76)(72,82,77)(85,96,101)(86,91,102)(87,92,97)(88,93,98)(89,94,99)(90,95,100)(103,114,119)(104,109,120)(105,110,115)(106,111,116)(107,112,117)(108,113,118)(121,132,137)(122,127,138)(123,128,133)(124,129,134)(125,130,135)(126,131,136), (1,23,30)(2,24,25)(3,19,26)(4,20,27)(5,21,28)(6,22,29)(7,14,144)(8,15,139)(9,16,140)(10,17,141)(11,18,142)(12,13,143)(31,38,45)(32,39,46)(33,40,47)(34,41,48)(35,42,43)(36,37,44)(49,56,63)(50,57,64)(51,58,65)(52,59,66)(53,60,61)(54,55,62)(67,74,81)(68,75,82)(69,76,83)(70,77,84)(71,78,79)(72,73,80)(85,99,92)(86,100,93)(87,101,94)(88,102,95)(89,97,96)(90,98,91)(103,117,110)(104,118,111)(105,119,112)(106,120,113)(107,115,114)(108,116,109)(121,135,128)(122,136,129)(123,137,130)(124,138,131)(125,133,132)(126,134,127), (1,88)(2,89)(3,90)(4,85)(5,86)(6,87)(7,80)(8,81)(9,82)(10,83)(11,84)(12,79)(13,78)(14,73)(15,74)(16,75)(17,76)(18,77)(19,91)(20,92)(21,93)(22,94)(23,95)(24,96)(25,97)(26,98)(27,99)(28,100)(29,101)(30,102)(31,103)(32,104)(33,105)(34,106)(35,107)(36,108)(37,109)(38,110)(39,111)(40,112)(41,113)(42,114)(43,115)(44,116)(45,117)(46,118)(47,119)(48,120)(49,121)(50,122)(51,123)(52,124)(53,125)(54,126)(55,127)(56,128)(57,129)(58,130)(59,131)(60,132)(61,133)(62,134)(63,135)(64,136)(65,137)(66,138)(67,139)(68,140)(69,141)(70,142)(71,143)(72,144)>;

G:=Group( (1,67)(2,68)(3,69)(4,70)(5,71)(6,72)(7,101)(8,102)(9,97)(10,98)(11,99)(12,100)(13,93)(14,94)(15,95)(16,96)(17,91)(18,92)(19,76)(20,77)(21,78)(22,73)(23,74)(24,75)(25,82)(26,83)(27,84)(28,79)(29,80)(30,81)(31,52)(32,53)(33,54)(34,49)(35,50)(36,51)(37,58)(38,59)(39,60)(40,55)(41,56)(42,57)(43,64)(44,65)(45,66)(46,61)(47,62)(48,63)(85,142)(86,143)(87,144)(88,139)(89,140)(90,141)(103,124)(104,125)(105,126)(106,121)(107,122)(108,123)(109,130)(110,131)(111,132)(112,127)(113,128)(114,129)(115,136)(116,137)(117,138)(118,133)(119,134)(120,135), (1,34)(2,35)(3,36)(4,31)(5,32)(6,33)(7,134)(8,135)(9,136)(10,137)(11,138)(12,133)(13,132)(14,127)(15,128)(16,129)(17,130)(18,131)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78)(61,79)(62,80)(63,81)(64,82)(65,83)(66,84)(85,103)(86,104)(87,105)(88,106)(89,107)(90,108)(91,109)(92,110)(93,111)(94,112)(95,113)(96,114)(97,115)(98,116)(99,117)(100,118)(101,119)(102,120)(121,139)(122,140)(123,141)(124,142)(125,143)(126,144), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,26,21)(2,27,22)(3,28,23)(4,29,24)(5,30,19)(6,25,20)(7,142,16)(8,143,17)(9,144,18)(10,139,13)(11,140,14)(12,141,15)(31,47,42)(32,48,37)(33,43,38)(34,44,39)(35,45,40)(36,46,41)(49,65,60)(50,66,55)(51,61,56)(52,62,57)(53,63,58)(54,64,59)(67,83,78)(68,84,73)(69,79,74)(70,80,75)(71,81,76)(72,82,77)(85,96,101)(86,91,102)(87,92,97)(88,93,98)(89,94,99)(90,95,100)(103,114,119)(104,109,120)(105,110,115)(106,111,116)(107,112,117)(108,113,118)(121,132,137)(122,127,138)(123,128,133)(124,129,134)(125,130,135)(126,131,136), (1,23,30)(2,24,25)(3,19,26)(4,20,27)(5,21,28)(6,22,29)(7,14,144)(8,15,139)(9,16,140)(10,17,141)(11,18,142)(12,13,143)(31,38,45)(32,39,46)(33,40,47)(34,41,48)(35,42,43)(36,37,44)(49,56,63)(50,57,64)(51,58,65)(52,59,66)(53,60,61)(54,55,62)(67,74,81)(68,75,82)(69,76,83)(70,77,84)(71,78,79)(72,73,80)(85,99,92)(86,100,93)(87,101,94)(88,102,95)(89,97,96)(90,98,91)(103,117,110)(104,118,111)(105,119,112)(106,120,113)(107,115,114)(108,116,109)(121,135,128)(122,136,129)(123,137,130)(124,138,131)(125,133,132)(126,134,127), (1,88)(2,89)(3,90)(4,85)(5,86)(6,87)(7,80)(8,81)(9,82)(10,83)(11,84)(12,79)(13,78)(14,73)(15,74)(16,75)(17,76)(18,77)(19,91)(20,92)(21,93)(22,94)(23,95)(24,96)(25,97)(26,98)(27,99)(28,100)(29,101)(30,102)(31,103)(32,104)(33,105)(34,106)(35,107)(36,108)(37,109)(38,110)(39,111)(40,112)(41,113)(42,114)(43,115)(44,116)(45,117)(46,118)(47,119)(48,120)(49,121)(50,122)(51,123)(52,124)(53,125)(54,126)(55,127)(56,128)(57,129)(58,130)(59,131)(60,132)(61,133)(62,134)(63,135)(64,136)(65,137)(66,138)(67,139)(68,140)(69,141)(70,142)(71,143)(72,144) );

G=PermutationGroup([[(1,67),(2,68),(3,69),(4,70),(5,71),(6,72),(7,101),(8,102),(9,97),(10,98),(11,99),(12,100),(13,93),(14,94),(15,95),(16,96),(17,91),(18,92),(19,76),(20,77),(21,78),(22,73),(23,74),(24,75),(25,82),(26,83),(27,84),(28,79),(29,80),(30,81),(31,52),(32,53),(33,54),(34,49),(35,50),(36,51),(37,58),(38,59),(39,60),(40,55),(41,56),(42,57),(43,64),(44,65),(45,66),(46,61),(47,62),(48,63),(85,142),(86,143),(87,144),(88,139),(89,140),(90,141),(103,124),(104,125),(105,126),(106,121),(107,122),(108,123),(109,130),(110,131),(111,132),(112,127),(113,128),(114,129),(115,136),(116,137),(117,138),(118,133),(119,134),(120,135)], [(1,34),(2,35),(3,36),(4,31),(5,32),(6,33),(7,134),(8,135),(9,136),(10,137),(11,138),(12,133),(13,132),(14,127),(15,128),(16,129),(17,130),(18,131),(19,37),(20,38),(21,39),(22,40),(23,41),(24,42),(25,43),(26,44),(27,45),(28,46),(29,47),(30,48),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72),(55,73),(56,74),(57,75),(58,76),(59,77),(60,78),(61,79),(62,80),(63,81),(64,82),(65,83),(66,84),(85,103),(86,104),(87,105),(88,106),(89,107),(90,108),(91,109),(92,110),(93,111),(94,112),(95,113),(96,114),(97,115),(98,116),(99,117),(100,118),(101,119),(102,120),(121,139),(122,140),(123,141),(124,142),(125,143),(126,144)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144)], [(1,26,21),(2,27,22),(3,28,23),(4,29,24),(5,30,19),(6,25,20),(7,142,16),(8,143,17),(9,144,18),(10,139,13),(11,140,14),(12,141,15),(31,47,42),(32,48,37),(33,43,38),(34,44,39),(35,45,40),(36,46,41),(49,65,60),(50,66,55),(51,61,56),(52,62,57),(53,63,58),(54,64,59),(67,83,78),(68,84,73),(69,79,74),(70,80,75),(71,81,76),(72,82,77),(85,96,101),(86,91,102),(87,92,97),(88,93,98),(89,94,99),(90,95,100),(103,114,119),(104,109,120),(105,110,115),(106,111,116),(107,112,117),(108,113,118),(121,132,137),(122,127,138),(123,128,133),(124,129,134),(125,130,135),(126,131,136)], [(1,23,30),(2,24,25),(3,19,26),(4,20,27),(5,21,28),(6,22,29),(7,14,144),(8,15,139),(9,16,140),(10,17,141),(11,18,142),(12,13,143),(31,38,45),(32,39,46),(33,40,47),(34,41,48),(35,42,43),(36,37,44),(49,56,63),(50,57,64),(51,58,65),(52,59,66),(53,60,61),(54,55,62),(67,74,81),(68,75,82),(69,76,83),(70,77,84),(71,78,79),(72,73,80),(85,99,92),(86,100,93),(87,101,94),(88,102,95),(89,97,96),(90,98,91),(103,117,110),(104,118,111),(105,119,112),(106,120,113),(107,115,114),(108,116,109),(121,135,128),(122,136,129),(123,137,130),(124,138,131),(125,133,132),(126,134,127)], [(1,88),(2,89),(3,90),(4,85),(5,86),(6,87),(7,80),(8,81),(9,82),(10,83),(11,84),(12,79),(13,78),(14,73),(15,74),(16,75),(17,76),(18,77),(19,91),(20,92),(21,93),(22,94),(23,95),(24,96),(25,97),(26,98),(27,99),(28,100),(29,101),(30,102),(31,103),(32,104),(33,105),(34,106),(35,107),(36,108),(37,109),(38,110),(39,111),(40,112),(41,113),(42,114),(43,115),(44,116),(45,117),(46,118),(47,119),(48,120),(49,121),(50,122),(51,123),(52,124),(53,125),(54,126),(55,127),(56,128),(57,129),(58,130),(59,131),(60,132),(61,133),(62,134),(63,135),(64,136),(65,137),(66,138),(67,139),(68,140),(69,141),(70,142),(71,143),(72,144)]])

144 conjugacy classes

class 1 2A···2G2H···2O3A3B3C···3N6A···6N6O···6CT6CU···6DJ
order12···22···2333···36···66···66···6
size11···19···9112···21···12···29···9

144 irreducible representations

dim1111112222
type+++++
imageC1C2C2C3C6C6S3D6C3xS3S3xC6
kernelC3:S3xC22xC6C2xC6xC3:S3C63C23xC3:S3C22xC3:S3C2xC62C2xC62C62C22xC6C2xC6
# reps11412282428856

Matrix representation of C3:S3xC22xC6 in GL5(F7)

60000
06000
00600
00060
00006
,
60000
06000
00600
00010
00001
,
20000
03000
00300
00040
00004
,
10000
02000
00400
00040
00002
,
10000
01000
00100
00040
00002
,
10000
00200
04000
00001
00010

G:=sub<GL(5,GF(7))| [6,0,0,0,0,0,6,0,0,0,0,0,6,0,0,0,0,0,6,0,0,0,0,0,6],[6,0,0,0,0,0,6,0,0,0,0,0,6,0,0,0,0,0,1,0,0,0,0,0,1],[2,0,0,0,0,0,3,0,0,0,0,0,3,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,2,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,2],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,2],[1,0,0,0,0,0,0,4,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,1,0] >;

C3:S3xC22xC6 in GAP, Magma, Sage, TeX

C_3\rtimes S_3\times C_2^2\times C_6
% in TeX

G:=Group("C3:S3xC2^2xC6");
// GroupNames label

G:=SmallGroup(432,773);
// by ID

G=gap.SmallGroup(432,773);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,4037,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^6=d^3=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<